If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2b^2+18b=40
We move all terms to the left:
2b^2+18b-(40)=0
a = 2; b = 18; c = -40;
Δ = b2-4ac
Δ = 182-4·2·(-40)
Δ = 644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{644}=\sqrt{4*161}=\sqrt{4}*\sqrt{161}=2\sqrt{161}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{161}}{2*2}=\frac{-18-2\sqrt{161}}{4} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{161}}{2*2}=\frac{-18+2\sqrt{161}}{4} $
| 5+16=-3(2x-7) | | (-8f)+(-f=+8) | | 5+9m=6m+3m-2 | | 4(3x+9)=-38+2 | | 3n+8+n=20 | | 4y-45=2y+23 | | 23=8x+5+6x | | 5x-9=(x/5-5) | | 13z+2z+18=5z-12 | | 5a-4a+7=18 | | 5=4(1x+9)=-3 | | 5+20x+125=2x+6 | | 17a-218=10a+286 | | 5+4(1x+9=-3 | | 2x-9.1=x+1.2 | | (2x-17)=(5x-12) | | -7(x+4)-41=5-32 | | 5x-12=4+x | | -9x-5=-9x+2 | | 6(1x-1)+8=32 | | y2=18-7y | | x8-8=10 | | -18.43=3.99=x | | 2+0.4(4m-1)=20 | | 7(2x-3)+4(9x-5)^1=x | | 7(2x-3)+4(9x-5)10=x2 | | 7(2x-3)+4(9x-5)/2=x2 | | a3-7a+6=0 | | 2x-5=8x=4 | | 5p-17=2(2p+7) | | 5(x+-2)-8x=-34 | | 7(2x-3)+4(9x-5)=x2 |